Transformations of algebraic Gauss hypergeometric functions

نویسنده

  • Raimundas Vidūnas
چکیده

A celebrated theorem of Klein implies that any hypergeometric differential equation with algebraic solutions is a pull-back of one of the few standard hypergeometric equations with algebraic solutions. The most interesting cases are hypergeometric equations with tetrahedral, octahedral or icosahedral monodromy groups. We give an algorithm for computing Klein’s pull-back coverings in these cases, based on certain explicit expressions (Darboux evaluations) of algebraic hypergeometric functions. The explicit expressions can be computed from a data base (covering the Schwarz table) and using contiguous relations. Klein’s pull-back transformations also induce algebraic transformations between hypergeometric solutions and a standard hypergeometric function with the same finite monodromy group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic transformations of Gauss hypergeometric functions

This paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back transformations between hypergeometric differential equations. This classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.

متن کامل

Transformations of hypergeometric elliptic integrals

The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) and (1/3, 1/3, 1/3). These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves y = x − x or...

متن کامل

Transformations of Gauss hypergeometric functions

The paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back transformations between hypergeometric differential equations. This classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.

متن کامل

Transformations of some Gauss hypergeometric functions

This paper presents explicit algebraic transformations of some Gauss hypergeometric functions. Specifically, the transformations considered apply to hypergeometric solutions of hypergeometric differential equations with the local exponent differences 1/k, 1/l, 1/m such that k, l,m are positive integers and 1/k + 1/l+ 1/m < 1. All algebraic transformations of these Gauss hypergeometric functions...

متن کامل

Grothendieck’s Dessins D’enfants, Their Deformations, and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations

Grothendieck’s dessins d’enfants are applied to the theory of the sixth Painlevé and Gauss hypergeometric functions, two classical special functions of isomonodromy type. It is shown that higher-order transformations and the Schwarz table for the Gauss hypergeometric function are closely related to some particular Bely̆ı functions. Moreover, deformations of the dessins d’enfants are introduced, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003